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Sortal Reduc:bility Theorem

Def Given a non-empty universe T, F from P(E) into [P(E) --> 2]

T is sortally reducible iff for some boolean function h of two
variables, F(p)(q) = F(E)(h(p,q)), all P.9 € P(E). F is
called inherently sortal i€ F is not sortally reducible.

Theorem (Sortal Reducibility)

For F conservative, F is sortally reducible iff is
intersective or F is co-intersective

preof
A. <==

if F is intersective then F(p)(q) = F(E)(p n q) since P Ng-=
En(pngq), all p,q.

if F is Co-intersective then F. p)(q)

= F(E)(-p v q) since
E-(-pvg)= En (~(-pv q9)) =pn-q = p - q
B, ==>

The 16 boolean functions in two variables are:

hi(p)(q) = E g2(pP)(q) = §

h- = P g2 = ~p

ha = g Ja = g

he = pn ga = "p VvV -q

he = p N -q gs = -pvVvag

he-- = "pNng 9s = P Vv ~q

hz = "p N -q g~ = pvag

he ™ = (Pp-4q) Vv (g - p) de = (PNgQg) v (-p n ~q)

1. Suppose F reduces via h.. That is, F(p)(q) = F(E)(E), all
P.49. Then F is constant, so trivial and thus intersective.
Ditto if F reduces via di.

2. Suppose F(p)(q) = F(E)(h2(p,q) - Then F(p)(q) = F(E)(p) =
F(E)(E), whence F is trivial and thus intersective. Ditto

if F(p)(Q) = F(E)(92(P,q)) = F(E)(-p) = F (€, scle-p)- Fle,4)

3. Suppose F(p)(q) = F(E)(ha(p.q)) = F(E)(q). Then for all p,p'
F(p)(4) = F(p')(q). But by CONS, F(§)(q) = F()(f nq) =
FI#)(#) = F(E)(#). Thus for all p,q F(p)(q) = F(E)(#), so
again F is trivial and thus intersective. Ditto when F(p)(q)
= F(E)(ga(p,q)) = £(E) (~q)

4. If F(p)(q) = F(E)(h(p,q)) = F(E)(p n q) then F is
intersective. Ditto if F(p)(q) = F(E)(ga(p,q)) =
F(E)(~(p n q))

v da——e e
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Suppose F(p)(q) = F(E)(hs(p,q)) = F(E)(p n ~q). Then F is
co-intersective. Ditto if F(p)(q) = F(E)(gs(p,q)) =

F(E)(~p Vv q). _ Ry
Fie) et ~fef

Suppose F(p)(q) = F(E)(he(p,q)) = F(E)(~p n q).° Then by CONs
F(p)(a) = F(p)(p n q) = F(E)(-P n (P n q)) = F(E)(f), so _
F 1s constant and thus intersective. F@”(EVLqu”; FE&

Suppose F(p)(q) = F(E)(ge(P,q)) = F(E)(p v ~a)¥ Then F(p)(q)
= F(p){p n q) = F(E)(p v ~(p NnNgq)) = F(E)(E), so F is trivial
and thus intersective

7. suppose F(p)(q) = F(E)(h,(p,q)) = F(E)(-p n ~q). Then F(p)(q)
= F(E)(~P N =q) = F(E)(-E N ~(~p N =q)) = F(E)(f), so F is
trivial and thus intersective. Equally F is trivial if
F(p)(g) = F(E)(g-(p,q)) = F(E)(p v q) = F(E)J(E v (p v q)) =
F(E)(E).

8. Suppose F(p)(q) = F(E)(he(pP,q)) = F(E)((p - q) v (@ - p)).
Then F(p)(q) = F(p)(p n q) = F(E)(p - (PNngq)) v ((pngq) - p)
= F(E)(p - q), so F is co-intersective.

And if F(p)(q) = F(E)(ge(p,q)) = F(E)((P n q) v (-p n ~q))
then F(p)(g) = F(p)(p n q) =
FE)((Pn (pnq)) v (-pn ~(pngq))) = F(E)((p n q) v =~p))
= F(Ej(-p v q}, so F is co-intersective. '
This exhausts the cases, proving the theorem. ww
Generalized (Quantifier) Prefix Theorem (GPT)
preliminaries

Given a non-empty universe E, write Rn for P(E™), the set of

n-ary relations over E. The set [R. -=-> 2] of functions from R,
into {0,1} is the set of Generalized D-ary quantifiers (over E}.

So the generalized quantifiers to date are the generalized

unary quantifiers.

def Where F is a generalized unary quantifier (over E) we
extend the domain of F to include all n+l ary relations
R by setting

F{R) = {<a1,...,an>| F({b| <ai,...,an,b> ¢ R} = 1}

So F sends each n+1 ary relation to an n-ary one, and the
domain of F is the set of n+1 ary relations, all n 2 0.



def A sequence <Fi,...F,> of generalized unary quantifiers

induces an n-ary quantifier F = (Fi,...,Fn) given by

F(R)

Fa(Fz(...(Fa(R))...))

def An n-ary quantifier H is (unary) reducible (or Fregean)

iff H is induced by some sequence <Hi,...,Hn> of unary
quantifiers.

Major Queries

1. When do distinct n-ary sequences of unary quantifiers
induce the same n-ary quantifier?
2. Characterize the n-ary quantifiers which are Fregean
(and those which are not). 1Is there any reason why, in
ordinary mathematical logics, we should have chosen Fregean
-analyses of multiply quantified formulas?
Query 1

def The trivial n-ary quantifiers are 0,, which sends all

n-ary R to 0, and 1,, which sends all n-ary R to 1

def Given F n-ary, write Fr~ , the post-complement of F, for

that n-ary quantifier given by
(E-)(R) = F(-R)

(-R is just the set of n-tuples not in R, of course)

Iemma {(TRIV)

a.

if F is a non-trivial as a unary quantifier then the range

[if F(§) = O then for some non-empty p, F(p) = 1 and so
for all n-ary R, F(Rxp) = R.
if F(#) = 1 then for some non-empty P, F(p) = 0 and so

for all n-ary R, F(-Rx p) = R]

(Fi,...,Fn) is trivial iff for some 1 < i < n, F, is trivial
<== Say Fy = 0. Then for all n-ary R, S

(Fll--~an)(R) = (Fil"'lFi—i)(p) = (Fll---an)(S)’ SO
(Fi,...,Fn) is trivial.

==> follows by induction from a. above. ¥
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Theorem (Generalized Quantifier Prefix Theorem)
Let F = (Fi,...,Fneax) and G = (Gi,...,Gne:) be non-trivial

n+l ary reducible quantifiers as indicated. Then

proof

ii.

G 1iff either (a) or (b) below holds:
(a) (Flr---an) = (G1,...,Gn) & Fn+1 = Gnea

(b) (G]_,n.-,Gn) (Fl,n--,Fn)'— & Gn+1 = -‘anbl

The right to left direction is obvious on a moment's
reflection

The left to right direction is given by a sequencé of
lemmas below. We write F* for (F.,...,Fn) and ditto for G*

lemma 1: For F and G as in the theorem, assume F = G. Then,

if Fava(f) = Gnea(f) = 0 then condition (a) obtains

pf: A. F* = G*. Suppose first that there is a property s

such that Fn+1(S) = Gnsa(s) = 1. So s % g. Then
for all n-ary relations R, ’

F*(R) = (F*,Fn+1)(R)‘S) = (G*IGn+1)(Rxs) = G*(R), SO ln
this case F* = G*. Moreover, this exhausts the cases.
Viz, suppose there is no s such that Fa.., (s) = Gn+a(8)
= 1. By the non-trivialty of Fn.a: (TRIV.b) let q such
that Fa.a(q) = 1. So g % & and Gn.:(q) = 0. Then,
for all n-ary relations R,

F¥(R) = (F*,Fa+1) (RXQ) = (G*,Gn+1) (RXQ) = G*(4), so F*

is constant, contradicting that it is non-trivial.

B. Given (A), ShoW Fnsi = Gnei1. Suppose, leading to a
contradiction that Fn+i(S) # Gn.i(s). Say that
Fanea(s) = 1 and Gn+a1(s) = 0. Then from the non-
triviality of F*, (TRIV.b), let p such that Fx(p) #
F*(#). Then,

F*(p) = (F*,Fa+1)(P Xs) = (G*,Gn+ar)(p X s) = G*(ﬂ)

= Fx(f) (from A. above)
a contradiction, proving the lemma. v
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lemma 2 For F = G as above, if Fno1(f) = Gn.(f) = 1
then, once again, condition {a) cbtains.

pf: from (i} observe that

F (F*an+1) = (F*”, “Frn+a) and

G

(G*,Fn-crl) = (G*", -'Gn-‘-l)

Applying lemma 1 to the righthand sides here we infer
“Fa+1 = "Gnsa, wWhence F,o,; = Gn..; and equally F*r~ =
G*r, whence F* = G* (post-complement is injective).

lemma 3 Let F = G and Favi(f) F Gaer(f). 5aY Fnea(f) = 1
and Gn.1(f) = 0.

Then F = (F*,Fn+1) = (F*'_, -‘Fnol) = (G*IGH+1)

Applying lemma 1 then G* = F*- and Gn.i = -“Fns:, satisfying
condition (b) of the theorem. v

As the three lemmas cover all the cases we have that F=2aG

implies that condition (a) or condition (b) cbtains, completing
the proof of the theorem. we

Discussion of the Generalized Prefix Theorem

£. Linguistic
The following (a,b) pairs of English sentences illustrate the
€gquivalences given by condition (b) of the th:zorem. E.g. they
are of the form:
a. NP, V NP> b. NP.,-neg V neg-NP.

Each boy read fewer than six plays (over the vacation)
NO boy read six or more plays (over the vazation)

logi]]

. Both John and Bill read at least as many plays as novels
Neither John nor Bill read more novels than plays

om

. More than half the boys answered no questions correctly
Less than half the boys answered any questions correctly

Uw

Exactly half the boys read more plays than poems
Exactly half the boys read at least as many poems as rlays

logN ]

. All but six students read more plays than novels
. Exactly six students read as many novels as plays

o



a. None of John's cats caught more than two mice

b. Each of John's cats caught at most two mice

a. Not every student knows as many male as female teachers

b. Some student knows more female than male teachers

a. Proportionately more boys than girls read at most six plays

b. Proportionaltely more girls than boys read more than six plays
a. Each student's doctor reads no technical journals at all

b. No student's doctor reads even one technical journal

a. Each counselor told John at least three stories
b. No counselor told John fewer than three stories

a. Each counselor told either John or Bill at least 3 stories
bE. No counselor told both John and Bill fewer than 3 stories

Pemark 1In the last two pairs the middle NPs are "duals", i.e.
of the semantic form: F and -Fr. Note that proper noun
denotations (c-homs) are self dual (B&C) .
B. Logical
We compare the GPT with the Linear Prefix Theorem 'of Keisler &
Walkoe (JSL, vol 38, N.1, 1973 pPp. 79 - 85). The LPT, somewhat

simplified for comparative purposes here is given below.

Linear Prefix Theorem (K&W)

Drawing quantifiers just from {V,B }, Ss of the form in (A)
and (B) below are not logically equivalent (indeed, not even
finitely equivalent) when the quantifier prefixes are
distinct (¢ is quantifier free and has no constants or
function symbols, and P is an n-place predicate symbol):

A. Qi1X1...0nXn PXi1...Xn B. Q1'X1...Qn'xn d

We may think of the information in the LPT as coming in two
parts: Part 1 is the weakened claim of non-equivalence obtained
when ¢ in B. above is replaced by PXi...Xan. This claim just
says, in essence, that distinct quantifier prefixes determine
distinct n-ary functions, and that much follows from the GPT
bresented here, observing that the functions induced by V’and‘a
are not trivial and neither is the complement or post complement
of the other. Obviously the GPT generalizes, massively, this
much of the LPT.

Part 2 of the LPT then says that not only do distinct
quantifier prefixes over {V, 3} determine distinct functions,
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but we cannot compensate for this difference by suitably chosing
¢. This part of the LPT is, obviously, not generalized in the
GPT. Observe however that this part of the LPT is not preserved
under even very modest additions to the quantifiers we may draw
frcm -~ additions we would consider trivial in other contexts.

Example 1: 1If we simply add the negation (not all, not any)
of either of the two quantifiers we have then Part 2 of LPT
fails: e.q.

(not V x) Px (3 x) (not Px) and

(not 3 x) px (V %) (not Px)

I

Example 2: Treat individual constants as quantifiers, viz:
M E(c,x)¢ [a] iff M F o [a(x/M(c)))
Then we have Qx; ¢X2 PXi,X» = CXi1 QX-> PXo,X,

Remark Example 2 above is a special case of a basic property
¢f individuals (c-homs) which may be given in the special case of
binary relations as follows {(writing R* for the converse of R):

Thm For H a complete homomorphism from R, --> 2, F any unary
generalized quantifier,

(F,H}(R) = (H,F)(R¥)
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